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We have studied the spectra of temperature fluctuations and the heat-transfer co- 
efficient in a disperse medium, and have compared the results with experimental 
data. 

Using the Glensdorf-Prlgozhine local potential method [i], Vasanova et al. [2] treated 
nonequilibrium temperature fluctuations relative to a stationary distribution of the mean 
temperature of a fluidized bed and derived an expression for the time correlation of the 
fluctuation function which was confirmed by experiment. 

In the present article we use the spectral theory of random processes to investigate 
the frequency spectrum of such fluctuations independently. Since temperature fluctuations 
are generated by a mechanism which is closely related to the disturbance of the uniformity 
of the bed structure, we first consider fluctuations of the volume density of the particles. 
According to [i] the probability of macroscopic fluctuations in nonequilibr~um systems can 
be calculated with the Einstein formula W ~ exp(--AS). The incremental deviation AS of the 
configurational entropy from its maximum value can be calculated by statistical physics 
methods developed in [3] for a fluidized bed. The fluctuating motion of particles in a 
fluidized bed is described by the Gibbs canonical distribution [3, 4]. This enables one to 
evaluate the phase integral 

Z = N!.I I exp(--H/O)dF = N!"I V~(2,~mO)3/~N.  (1) 
[r] 

In contrast with [3], we define the free volume Vf as the difference between the settled out 
volume V of the bed and the volume Vl, occupied by the particles under close packing [5]. 
Per particle we have 

~ 1 =  N = . ~ - - [ ( V - - V 1 , ) = o - - a ,  Vpp-~ 1 I - -  " p ,  " 

(2 )  
V V1, - I  

a = ~ = Vvp-~  1 = n -~, ~ ,  = ~ = V v p . _ .  
N N 

The effective free energy is 

F = - - 0 1 n Z = - - O N  1 --~-+-~- (3) 

Hence the specific configurational entropy is 

s =  -V- - ~ -  v 

We consider approximate "coarse-grained" fluctuations ~0N for a certain volume of the bed 
[3]. To terms of the order (~0N) 2 the deviation of the total entropy of the system from 
the equilibrium value is 

& s = s ~ - ( s )  8 s +  2 - - - 2  , ( p , )  , ' 

~PN ~ ~ ~ d V ,  (69N) 2 = --~" cp2dV, ~ ----- O N - -  ( P,V >" 
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According to  the Einstein formula the probability of fluctuation has the form 

W ( 6 p N ) = ~ -  <pN> ~ 1 - -  9, exp~--t !~z (~9~)z (9N>2  1 9, [" (6) 

From (5) and (6) t h e r e  f o l l o w s  an e x p r e s s i o n  f o r  t h e  mean s q u a r e  of  t h e  f l u c t u a t i o n s  o f  t h e  
volume c o n c e n t r a t i o n  of  t he  p a r t i c l e s  

<(~pN) 2> = <9~>~ 1-------:-'--). (7) 
P, 

We note that this same result can be obtained by generalizing Smolukovskii's combinatorial 
method [6, 7]. 

In the analysis of the temperature fluctuations we assume, as in [2], that ~T obeys the 
hyperbolic heat-conducting equation 

026T 06T 0 0ST (8) 
T ' ~ F- + 0"--7--=aih Oxi Oxk 

The connection between temperature fluctuations and hydrodynamic fluctuations requires con- 
sidering the complete system of hydrodynamic and heat-transfer equations, which greatly 
complicates the problem even for a single-phase medium [8]. An approximate solution can be 
obtained by using Landau's idea [9] of introducing external sources of fluctuations into the 
dynamic equations. This approach was used in the analysis of fluctuations of the concentra- 
tion of solid particles of a disperse system [7]. We shall follow this method, considering 
temperature instead of concentration. 

We introduce a random source yT(~, t) into the right-hand side of (8), and express ~T 
and YT in terms of Fourier--Stieltjes stochastic integrals 

= ~ exp [i (k~7 + ~/)] dZr,  gr = ~[ exp [i (k.~r + ~/)] dZ u. 6T (9) 

S u b s t i t u t i n g  (9) i n t o  (8), we o b t a i n  an e q u a t i o n  r e l a t i n g  the  s p e c t r a l  measures  dZ T and 
dZy: 

(hO--Xr~2 + aihk~kh)dZ r = dZv. (I0) 

Since within the framework of the present model the temperature is considered as a passive 
transportable admixture, local temperature fluctuations ~T must be first of all related to 
fluctuations ~pN of the volume concentration of the solid phase, with the dynamics described 
by the hyperbolic diffusion equation [7]. In order to take account of the buildup of 
fluctuations compensating their damping, we introduce a random source yp into the diffusion 
equation. The characteristic time of change of yp is of the same order of magnitude as the 
time of action of the hydrodynamic forces which produce the fluctuation, i.e. of the same 
order as the inner scale of pseudoturbulence ~. 

O 

Since the lifetime of the fluctuations Tp >> T, their random buildup can be con- 
sidered as a process with independent increments, which leads to a spectral density of the 

source ~pp = ~pp (k) which is independent of frequency. Taking account of the above, we 
make the same assumption %~th respect to the source YT in the heat-conduction equation. 
Multiplying (9) by the complex conjugate and taking the statistical average, we obtain an 
equation for the spectral density of the random process ~T(~, t): 

Vuu ~ )  ( dZ~ dZ~ > 
~rrr ~r k) = --~o z + (aihk~k~ - -  ~r(OZ) z , ~ v  ~) = lira - -  d ~ f k  - "  (11) 

Integrating (Ii) with respect to the frequency, we obtain 

�9 ~ ~ (a~nk~kl~ - -  ~r ~ 2 
- - o o  

Thus 

d(o, d-k--~ 0 

.+ 

~yy (k). (12) 
a~k~k:~ 
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~rr ((o, ~) = 1 aihkikk%r (~) 
a 0) 2 + (a~akik~ - -  ~ ~2)~ (13) 

The spectral density of the random process 6oN(~ , t) is described by an analogous relation 
in which the diffusion coefficient tensor Dik enters instead of aik [7]. Since at present 
we know of no experimental data on the spatial correlations of temperature fluctuations in 
disperse systems, we simplify further calculations by restricting ourselves to a one-dimen- 
sional approximation~ In order to find the relation between the spectral densities of the 
random processes ~T(~, t) and 6pN(~, t), we consider the temperature fluctuations of a single 
particle 6T~. Assuming that the stationary distribution of the mean temperature in the re- 
gion occupied by the fluctuations is linear, using the relaxation approximation 

d 6Tt = 1-~(6T, - -Ex) ,  (14) 
dt Tr 

where XT = ctpxR/3a, and differentiating (14) with respect to time, we obtain the dynamic 
equation for ~Tx: 

d ~ d 
~r ~ 6 T I - - ~ 6 T t - ~ - E 6 v  t = O. 

dl 2 dt (15) 

Here 6vx = dx/dt is the fluctuating velocity of the particle, and x is its random Lagranglan 
coordinate. Expressing 6Tx and x(t) in (15) interms of Fourier--Stieltjes stochastic inte- 
grals, we find 

(TTm2 + [~) dZrl = i~dZx, (16) 

Similarly, from the relation T = (i + i~T)Tx , which follows from Newton's law for convec- 
tive heat transfer, we obtain 

dZ r = (1 -+- i~Tr) dZrl. (17) 

By using Eqs. (16) and (17) we find the spectral densities of the random processes ~Tx and 
6T in the standard way: 

~r , r i  = EZ(! + TroZ)~xx, ~rr  = (1 + (0zT~)~rlrl , ~ r r  (~, ~ =  EZ~xx" (18) 

The determination of the relations between the Lagrangian and Eulerian characteristics of 
turbulent flows is a complicated problem of statistical fluid mechanics [8], and attempts 
to solve it theoretically have so far not given any practical results. 

Random displacements of particles can be expressed in general form in terms of fluc- 
tuations of their volume concentration ~pN by using the equation of continuity in Lagrangian 
form pN J = const. In the linear approximation we have 

jF / OJ ~ ]-i 

This gives a relation between the spectral densities: 

~xx  = AZ~op, ~TT = (AEpWoo, @rr (k) = (AE)2Oop (k). ( 2 0 )  

In spite of the fact that an explicit form of the particle spectral function Cpp(k) was 
found in [5, 7], Eq. (20) does not settle the question of the spectral density of the corre" 
lation of the temperature fluctuations, since A must be determined independnetly, and this 
requires the use of supplementary considerations based, for example, on experimental data 
or on hypotheses analogous to those in the spectral theory of turbulence of single-phase 
media [8] and in statistical fluid mechanics of disperse systems [5, i0]. 

Using Eqs. (6) and (7), we can write ~pp(k) in the form [I0] 

~p~(k) = km < 69~ > exp --  k~ ' (21) 

where k m is the wave number at which the short-wave part of the spectrum is broken off 
[6, 7]. For sufficiently large k m the asymptotic form of (21) can be used: 

@oo (k) ~ < 6p~ > 6(kin-- k). (22) 
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Substituting (22) into (20), and then (20) into (13), assuming that the density VTT is one- 
dimensional, and integrating with respect to k, we find the frequency spectrum of the tem- 
perature fluctuations at a fixed point of a disperse medium 

Srr(co) : Srr (~) = ~ 

( 6T z> = (AE) ~ ( 6p~ > , mg = k~al~ . 

Applying the Wiener-Khinchin theorem to this spectrum, we obtain the correlation function 
in the form [2] 

( Itl )(cos&q 1 sin~ltl), qgrr (t) = ( 6T 2 ) exp 2rr - 2co----~ r 

~ o = V k , . a  l V 1 
x r 42 r : (% - -  (2rr)~" 

(24) 

We also consider thermal fluctuations of the body which exchanges heat with the flui- 
dized bed. For a random temperature distribution in the bed we use (8). In doing this we 
assume that the distribution of mean temperatures obeys the steady-state heat-conduction 
equation. These conditions can be ensured, for example, by sufficiently intense internal 
heat sources in the body. In particular, these conditions hold in studying heat transfer 
in a bed with plate thermoanemometers [10-13]. 

In Eq. (8) for temperature fluctuations it is convenient to go over to the Fourier 

components fT. For a one-dimensional problem we have: 

dZ 6T (~, x), 6T(m, 0)= 6Ts. (25) 

Since in using the random source method [9] we are investigating quasistationary (smoothed) 
fluctuations corresponding to the low-frequency part of the spectrum, we can limit ourselves 
to an approximate solution of (25). This can be obtained, for example, by the integral 
heat balance method [14]. Integrating both sides of (25) with respect to x from 0 to the 
thickness ~ of the thermal layer, and neglecting in this approximation the relaxation terms, 
we obtain 

i~c' 6T (~, x) dx . . . .  % \ dx J x=o 

o (26) 

6 0, 0=o ,  o. 

Using the conditions on the boundaries of the thermal layer and the heat balance for the 
body under consideration, we can write 

( + ) 2  06T --6qs, i~K6Ts= --6$~. (27) 

Here K plays the role of the effective heat reception, and for small Blot numbers K = Vc~/F. 
It follows from (26) and (27) that Z = 3K/c'. Using (25) for the heat-transfer surface 

| | ~ ] x = o @  gs, (28) c--;- 

where ~s is the Fourier component of the source of random fluctuations, and evaluating the 
derivative on the right-hand side by using the distribution in (27), we find 

2 %c'~ 6 T s = ~ .  (29) 

M u l t i p l y i n g  t he  p o l y n o m i a l  (29) by t h e  complex  c o n j u g a t e ,  we o b t a i n  t he  r e q u i r e d  s p e c t r a l  
density 
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Fig. I Fig. 2 

Spectral density of temperature fluctuations in a 
fluidized bed; points are from experiments [2, 18]. STT(~)" 
i02 is in sec, and ~ is in sec -x. 

Fig. 2. Autocorrelation function of fluctuations of heat- 
transfer coefficient in a fluidized bed. z is in sec. 

1 < ~T~ > ~0 ~ St, r, ((o) = O) 2 -  

" ,  ?--~ 1 
b L*= 2  g_.2 

~ 9K 2 ' 9 K2~ 

(30) 

Applying the Wiener-Khinchin theorem to (30), we obtain the correlation function of the sur- 
face temperature fluctuations in the form (24), where in this case ~ = /2~~7~K~r'~Tg~: 
We find the spectral density of the fluctuations of the heat-transfer coefficient by using 
the heat balance (27) of the body under consideration and the relations 

% < qs > + 8% . . . . . .  , < q , > = < ~ >  <AT>, 
AT < AT > + 6Ts (31) 

== <=>+~= 

From (27) and (31) we find a relation^ between the Fourier components of the fluctuations of 
the heat-transfer coefficient da and the surface temperature 6Ts: 

6~= <AT><=> ( <~>i~K + l ) 6 > s .  (32) 

S ~  (~o) = 

Using (30) and (32), we find 

<&zZ(0)> (o~z+ <c~z> ) 
K 2 (33) 

2 
2nxr [ (o~z-- 9 

4 < 8~2 > = 
9 

} ~ 
K2T r 

zc' < ~T: > 
< AT > zT r 

where 

The corresponding correlation function has the form 

= %=(t) = exp ( [/[ ~ cos~t. (34) 
~ < ~2------~ \ 21 r J 

The last relation holds if the following equation for the average heat-transfer coefficient 
is satisfied: 
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< = > ~ 9 % (35) 

To within a numerical factor Eq. (35) agrees with the well-known Mickley--Fairbanks formula 
[ii, 13]. In the latter 1/7 appears instead of 2/9, which for low-frequency fluctuations 
agrees with experiment. Equation (35) was generalized for high frequencies within the frame- 
work of the "packet" model of heat transfer in [ii]. It should be noted that formula (35) 
was obtained by using the hyperbolic equation (8) in which the relaxation time Tr has to be 
determined independently. In principle it is possible to characterize the relaxation of the 
heat capacity, the thermal conductivity, the heat flux, or the temperature gradient. While 
the data favor the use of the hyperbolic heat-conduction equation for modeling heat transfer 
in a fluidized bed [15], at present not all these questions have been completely cleared up 
[16, 17]. 

Figure 1 shows the spectral density of the temprature fluctuations in a fluidized bed 
[2, 18] The following data .from [2] were used in calculations with (23): ~ = 7.58 sec -I 
T r = 0.0286 see. The value ~o = 19.1 sec -~ was determined from (24). Using Eq. (23) for 
mp, thewave number at which the spatial spectrum of the fluctuations is broken off was es- 
timated to be km = moC~r/a = 304 m-:. An estimate of this same quantity in terms of the free 
volume of (2) gives km~(<PN> '13/ 2R)(l- < p~. >/p,)--= 360 m "I. The values found for k m are of 
the same order of magnitude as those calculated with the formulas given in [5, i0]. The 
thermal conductivity I of the bed was calculated with the dimensionless equation given in 
[19]; the volumetric heat capacity pc = po~co + (i --e)plcl = 4.05"106 J/ma'~ (co = 4.19 
kJ/kg'~ c~ = 0.8 kJ/kg'~ e = 0.9, Po = 998 kg/m a, pl = 3590 kg/ma). The thermal dif- 
fusivity of the bed a = l/c' = 458/4.05"106 = 1.13.10 -~ m=/sec. 

Figure 2 shows the correlation function of the heat-transfer coefficient fluctuations 
obtained by using a plate thermoanemometer in a fluidized bed of corundum particles 270 ~m 
in diameter fluidized by air with a filtration velocity of 0.27 m/sec (pistonlike condi~ 
tions). The anemometer consisted of a 25 x 5 • 1.5 mm plate of epoxy resin with 5-~m-thick 
platinum foil cemented to the flat sides. The curve in Fig. 2 is well approximated by func- 
tion (34) with ~r = 0.326 sec and ~ = 7.85 sec -~. The heat-transfer coefficient calculated 
with (35) is <~> = 387 W/m='~ (c' = 3.42"102 kJ/k$~ ~ = 0.646 W/mS'~ [ii]) and its ex- 
perimental value is 330 W/m=.~ The heat flux 6qB in the thermoanemometer backing must be 
taken into account in the heat-balance equation (27). For harmonic temperature fluctuations 
6T B = 6T(x)exp(i~t) it follows from the solution of the heat-conduction equation that 

6qBo = ~B d6T~ 
c~ dt (36) 

Averaging (36) over the spectrum of temperature fluctuations STsTs(m) (30), we obtain 

f B~ 3 ]//'.9~cB dST~ 
c3q B = 2  aq ,~T,Ts(~)dco-----~-- 2r dt (37) 

0 r 

Using (37) it follows from the heat balance in (27) that 

3 / %BPBCB 
2~o3 2 (38)  

For the anemometer used to obtain the curve in Fig. 2 (PB = 1.18"10a kg/me, CB = 1.91 kJ/ 
kg "~ ~B = 0.2 W/m~ PF = 21.45"i03 kg/me, CF = 0.13 kJ/kg~ XF = 70 W/m~ calculation 
with (38) gives K = 50 J/m='~ for ~o = 8 sec -I. An estimate of this same quantity based on 
experimental data for <~> (35) and me (30) gives K = <e>/mo = 330/8 = 41 J/mS"~ Thus, the 
theoretical analysis of thermal fluctuations is in satisfactory agreement with the experi- 
mental data. In conclusion, we note that since (38) enters the expression for the spectral 
densities (30), (33), the anemometer because of its thermal inertia acts as an unusual fre- 
quency filter, cutting out the finest details of the spectrum. 

NOTATION 

W, probability; AS, change in entropy; Z, phase integral; H, Hamiltonian; 0, effective 
particle temperature; N, number of particles in system; m, mass of a particle; V, Vf, VI,, 
volumes occupied by bed, gas, and close-packed particles, respectively; (o, ~f, ~,, same per 
particle); p, density of material; PN, P,, volume density of particles in bed and under 
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close packing; F, free energy; n, particle concentration; t, running time; ~r, relaxation 
time; a, thermal diffuslvlty; T, 6T, temperature and Its fluctuation; r(x, y, z), radlus 
vector; k, wave vector; m, frequency; J, Jacoblan; y, source of random fluctuatlons; ~, ~, 
S, spectral densities; ~, correlation function; R, particle radius; mo, m, characteristic 
frequencies determined in (23), (24), and (30), q, ~q, heat flux and its fluctuations; ~, 
thermal conductivity; c, specific heat; c', volumetric heat capacity; l, thickness of 
thermal layer; K, heat reception introduced in (27); ~, heat-transfer coefficient; e, 
porosity; <"'>, average. Subscripts: O, continuous medium, I, solid phase; s, surface; 
B, backing; F, foil. 
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